High Energy Astrophysics research at Sabanci University concentrates on the structure, dynamics, and evolution of neutron stars, black holes, white dwarfs, matter in their environments, as well as the radiation emitted by these compact objects. Instrumentation research with room temperature semiconductors is also pursued. This research particularly aims at understanding the structure of matter at the highest densities, up to and beyond 10^15 g/cm^3, under extreme magnetic fields of up to10^15 G and the most rapid possible rotation rates, with rotation periods as short as milliseconds. Theoretical research, as well as observations with international X-ray and gamma ray observatory satellites, in addition to optical observations at the TÜBİTAK National Observatory are pursued. The Sabancı University Astrophysics and Space Forum also hosts workshops and foster scientific collaboration with astrophysicists in Turkey and abroad. Detailed information on high energy astrophysics can be found at Astrophysics and Space Forum web pages. http://astrons.sabanciuniv.edu/asf

The Experimental Condensed Matter Physics Group mainly focuses on the electronic and magnetic properties of nanostructures and low dimensional electronic systems under extreme physical conditions (temperatures near absolute zero and very high magnetic fields). Specimens are patterned by electron beam lithography and have features down to a few tens of nanometers. The behavior of charge carriers under these conditions represents transport regimes not only interesting for basic research but also adaptable for novel electronic device applications. Transport experiments are mostly done on graphene and GaAs based materials. Another field of study is nanoelectromechanical systems (NEMS). The research in this field is focused on development of ultrasensitive displacement sensors and their applications on the problem of detecting the mechanical quantum. These experiments involve nanofabrication and high frequency measurements at low temperatures and magnetic field. The experimental research groups also develop scientific instruments for their research. A scanning tunneling microscope (STM) that will operate at ultra high vacuum, cryogenic temperatures and magnetic field is now being built. STM is to be used as a surface science tool. It is also used to create structures with dimensions down to the atomic level and to probe their properties. A non-contact Atomic Force Microscope(nc-AFM) operating in Ultra High Vacuum(UHV) is developed to study lateral force interactions at atomic scale. This microscope is being used to study atomic scale friction and molecular scale manipulation on Si(111) surface. A general purpose Atomic Force Microscope is also used for characterization of nanostructures. Scanning Hall Probe Microscopes(SHPM) operating at low and room temperatures are developed and used to study magnetic properties of superconductors and magnetic nanostructures. The first graphene materials have successfully been produced in the group using mechanical exfoliation. Graphene Hall sensors are being developed for SHPM applications.

The theoretical nanophysics group focuses on fundamental physics problems that arise in nanometer scale objects. Recent research interests of the group were on quantum transport in nanostructures, mesosopic physics, graphene physics, spintronics, spin Hall effect and topological insulators. The quantum information group is working on quantum entanglement and decoherence - not only fundamental concepts of quantum mechanics but also important challenges in the construction of quantum computers.

String theory is considered to be the best candidate for a quantum theory of gravity. In mathematics, bosonic string states and vertex operators offer the most direct representation of the Monster, the biggest simple finite group. The structure constants of the Fake Monster Lie algebra can be shown to be identical with 3-string amplitudes. Other sporadic finite groups and hyperbolic Lie algebras are also of interest due to the insights they may provide into string theory. Furthermore, string theory can still be useful in hadron phenomenology, where it originated. Although string theories require 10 or 11 or 26 dimensions, our perceived spacetime is four dimensional. This may be a consequence of some very special properties of 4-manifolds such as the existence of uncountably many distinct R4's. Four-manifolds are also unique in harboring selfdual gauge fields and Weyl spinors for Euclidean signature.

Concepts from physics are applied to problems in molecular biology in two complementary ways. On the one hand, because the biological function of life's molecules is constrained by their physical and chemical properties, it is important to describe the functional transformations these molecules undergo using the language of chemical physics. On the other, the most successful experimental techniques for probing the structure and dynamics of biomolecules at atomic resolution exploit the fundamental physical properties of these molecules, like their interaction with mechanical and electromagnetic forces. Research in theoretical molecular biophysics at Sabancı University touches on both of these aspects. Employing the toolboxes of equilibrium and nonequilibrium statistical mechanics we develop efficient computational approaches for identifying and characterizing large-scale conformational transitions of biomolecules using molecular dynamics (MD) simulations. In addition, we develop a methodogy for utilizing the detailed dynamical information contained in the MD trajectories to simulate electron spin resonance (ESR) spectra of the studied biomolecules. The ESR spectra computed from first principles are directly compared with experimental data provided by our international collaborators.

Course Web Site

- BIO 501 Advanced Molecular Bio Huveyda Basa?a
- BIO 567 Signal Transduction Batu Erman
- BIO 636 Cancer Biology Devrim Gozuac?k
- CS 501 Adv.Data Str.&Algorithms Kamer Kaya
- CS 503 Theory of Computation Kemal ?nan
- CS 531 Parallel Process.&Algorithms Kamer Kaya
- CS 539 Software Verific.&Validation Cemal Y?lmaz
- EE 525 Real-Time Systems Design Ahmet Onat
- EE 550 Random Processes Ozgur Ercetin
- EE 556 Antennas&Propagation ?brahim Tekin
- EE 563 Digital Image Processing Mujdat Cetin
- EE 626 Microelectromechanical Sys. Murat Kaya Yap?c?
- ENS 512 In.to the Finite Element Meth. Gullu K?z?ltas Sendur
- IE 503 Stochastic Processes Ahmet Bar?s Balc?o?lu
- IE 516 Additive Manufacturing Bahattin Koc
- IE 527 System Dynamics Ali Rana At?lgan
- IE 563 Metal Cutting Mech.&Dynamics Erhan Budak
- IE 58002 Sp. Tp.in IE: Prod. Planning Esra Koca
- IE 58003 Sp. Tp.in IE:Optim.forBigData ?lker Sevket Birbil
- IE 602 Stochastic Programming Nilay Noyan
- MAT 505 Mechanical Behavior of Mater. Melih Papila
- MAT 521 Tribology Mahmut Faruk Aksit
- MAT 522 Glass Science & Engineering Gulcin Albayrak
- MAT 560 Carbon Materials;Sci.&Eng. Yuda Yurum
- MAT 571 Intro. to Electron Microscopy Burc M?s?rl?o?lu
- MATH 502 Analysis II Nihat Gokhan Go?us
- MATH 512 Algebra II Ayesha Asloob Qureshi
- MATH 561 Algebraic Combinatorics Ka?an Kursungoz
- MATH 572 Introduction to Algebra Cem Guneri
- ME 530 Microfluidics & Nanofluidics Ali Kosar
- ME 562 Fundamentals of Trans.Process. Mehmet Y?ld?z
- MFG 512 Mechanics of Solids Eralp Demir
- PHYS 512 Electromagnetic Theory Cihan Kemal Sacl?o?lu
- PHYS 566 Compact Stars Mehmet Ali Alpar
- PHYS 584 Quantum Comp&Quant.Info Mehmet Zafer Gedik
- PHYS 592 Mod.Top.in Condensed Mat. Phys ?nanc Adagideli
- XM 590 01 Master Project Tonguc Unluyurt
- GR 501E Acad. Practices & Development Daniel Lee Calvey
- GR 502E Acad. Practices & Development2 Daniel Lee Calvey
- GR 503E Acad. Practices & Development3 Daniel Lee Calvey
- PHYS 532 Quantum Mechanics II ?nanc Adagideli
- PHYS 541 Statistical Mechanics I Unal Ertan
- IE 751 Graduate Seminar I Hans Frenk
- PHYS 551 Graduate Seminar I ?nanc Adagideli
- PHYS 552 Graduate Seminar II ?nanc Adagideli